































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































	Contents
	Preface
	1. Overview of WebGL
	Advantages of WebGL
	You Can Start Developing 3D Graphics Applications Using Only a Text Editor
	Publishing Your 3D Graphics Applications Is Easy
	You Can Leverage the Full Functionality of the Browser
	Learning and Using WebGL Is Easy

	Origins of WebGL
	Structure of WebGL Applications
	Summary

	2. Your First Step with WebGL
	What Is a Canvas?
	Using the <canvas> Tag
	DrawRectangle.js

	The World’s Shortest WebGL Program: Clear Drawing Area
	The HTML File (HelloCanvas.html)
	JavaScript Program (HelloCanvas.js)
	Experimenting with the Sample Program

	Draw a Point (Version 1)
	HelloPoint1.html
	HelloPoint1.js
	What Is a Shader?
	The Structure of a WebGL Program that Uses Shaders
	Initializing Shaders
	Vertex Shader
	Fragment Shader
	The Draw Operation
	The WebGL Coordinate System
	Experimenting with the Sample Program

	Draw a Point (Version 2)
	Using Attribute Variables
	Sample Program (HelloPoint2.js)
	Getting the Storage Location of an Attribute Variable
	Assigning a Value to an Attribute Variable
	Family Methods of gl.vertexAttrib3f()
	Experimenting with the Sample Program

	Draw a Point with a Mouse Click
	Sample Program (ClickedPoints.js)
	Register Event Handlers
	Handling Mouse Click Events
	Experimenting with the Sample Program

	Change the Point Color
	Sample Program (ColoredPoints.js)
	Uniform Variables
	Retrieving the Storage Location of a Uniform Variable
	Assigning a Value to a Uniform Variable
	Family Methods of gl.uniform4f()

	Summary

	3. Drawing and Transforming Triangles
	Drawing Multiple Points
	Sample Program (MultiPoint.js)
	Using Buffer Objects
	Create a Buffer Object (gl.createBuffer())
	Bind a Buffer Object to a Target (gl.bindBuffer())
	Write Data into a Buffer Object (gl.bufferData())
	Typed Arrays
	Assign the Buffer Object to an Attribute Variable (gl.vertexAttribPointer())
	Enable the Assignment to an Attribute Variable (gl.enableVertexAttribArray())
	The Second and Third Parameters of gl.drawArrays()
	Experimenting with the Sample Program

	Hello Triangle
	Sample Program (HelloTriangle.js)
	Basic Shapes
	Experimenting with the Sample Program
	Hello Rectangle (HelloQuad)
	Experimenting with the Sample Program

	Moving, Rotating, and Scaling
	Translation
	Sample Program (TranslatedTriangle.js)
	Rotation
	Sample Program (RotatedTriangle.js)
	Transformation Matrix: Rotation
	Transformation Matrix: Translation
	Rotation Matrix, Again
	Sample Program (RotatedTriangle_Matrix.js)
	Reusing the Same Approach for Translation
	Transformation Matrix: Scaling

	Summary

	4. More Transformations and Basic Animation
	Translate and Then Rotate
	Transformation Matrix Library: cuon-matrix.js
	Sample Program (RotatedTriangle_Matrix4.js)
	Combining Multiple Transformation
	Sample Program (RotatedTranslatedTriangle.js)
	Experimenting with the Sample Program

	Animation
	The Basics of Animation
	Sample Program (RotatingTriangle.js)
	Repeatedly Call the Drawing Function (tick())
	Draw a Triangle with the Specified Rotation Angle (draw())
	Request to Be Called Again (requestAnimationFrame())
	Update the Rotation Angle (animate())
	Experimenting with the Sample Program

	Summary

	5. Using Colors and Texture Images
	Passing Other Types of Information to Vertex Shaders
	Sample Program (MultiAttributeSize.js)
	Create Multiple Buffer Objects
	The gl.vertexAttribPointer() Stride and Offset Parameters
	Sample Program (MultiAttributeSize_Interleaved.js)
	Modifying the Color (Varying Variable)
	Sample Program (MultiAttributeColor.js)
	Experimenting with the Sample Program

	Color Triangle (ColoredTriangle.js)
	Geometric Shape Assembly and Rasterization
	Fragment Shader Invocations
	Experimenting with the Sample Program
	Functionality of Varying Variables and the Interpolation Process

	Pasting an Image onto a Rectangle
	Texture Coordinates
	Pasting Texture Images onto the Geometric Shape
	Sample Program (TexturedQuad.js)
	Using Texture Coordinates (initVertexBuffers())
	Setting Up and Loading Images (initTextures())
	Make the Texture Ready to Use in the WebGL System (loadTexture())
	Flip an Image’s Y-Axis
	Making a Texture Unit Active (gl.activeTexture())
	Binding a Texture Object to a Target (gl.bindTexture())
	Set the Texture Parameters of a Texture Object (gl.texParameteri())
	Assigning a Texture Image to a Texture Object (gl.texImage2D())
	Pass the Texture Unit to the Fragment Shader (gl.uniform1i())
	Passing Texture Coordinates from the Vertex Shader to the Fragment Shader
	Retrieve the Texel Color in a Fragment Shader (texture2D())
	Experimenting with the Sample Program

	Pasting Multiple Textures to a Shape
	Sample Program (MultiTexture.js)

	Summary

	6. The OpenGL ES Shading Language (GLSL ES)
	Recap of Basic Shader Programs
	Overview of GLSL ES
	Hello Shader!
	Basics
	Order of Execution
	Comments

	Data (Numerical and Boolean Values)
	Variables
	GLSL ES Is a Type Sensitive Language
	Basic Types
	Assignment and Type Conversion
	Operations

	Vector Types and Matrix Types
	Assignments and Constructors
	Access to Components
	Operations

	Structures
	Assignments and Constructors
	Access to Members
	Operations

	Arrays
	Samplers
	Precedence of Operators
	Conditional Control Flow and Iteration
	if Statement and if-else Statement
	for Statement
	continue, break, discard Statements

	Functions
	Prototype Declarations
	Parameter Qualifiers

	Built-In Functions
	Global Variables and Local Variables
	Storage Qualifiers
	const Variables
	Attribute Variables
	Uniform Variables
	Varying Variables

	Precision Qualifiers
	Preprocessor Directives
	Summary

	7. Toward the 3D World
	What’s Good for Triangles Is Good for Cubes
	Specifying the Viewing Direction
	Eye Point, Look-At Point, and Up Direction
	Sample Program (LookAtTriangles.js)
	Comparing LookAtTriangles.js with RotatedTriangle_Matrix4.js
	Looking at Rotated Triangles from a Specified Position
	Sample Program (LookAtRotatedTriangles.js)
	Experimenting with the Sample Program
	Changing the Eye Point Using the Keyboard
	Sample Program (LookAtTrianglesWithKeys.js)
	Missing Parts

	Specifying the Visible Range (Box Type)
	Specify the Viewing Volume
	Defining a Box-Shaped Viewing Volume
	Sample Program (OrthoView.html)
	Sample Program (OrthoView.js)
	Modifying an HTML Element Using JavaScript
	The Processing Flow of the Vertex Shader
	Changing Near or Far
	Restoring the Clipped Parts of the Triangles (LookAtTrianglesWithKeys_ViewVolume.js)
	Experimenting with the Sample Program

	Specifying the Visible Range Using a Quadrangular Pyramid
	Setting the Quadrangular Pyramid Viewing Volume
	Sample Program (PerspectiveView.js)
	The Role of the Projection Matrix
	Using All the Matrices (Model Matrix, View Matrix, and Projection Matrix)
	Sample Program (PerspectiveView_mvp.js)
	Experimenting with the Sample Program

	Correctly Handling Foreground and Background Objects
	Hidden Surface Removal
	Sample Program (DepthBuffer.js)
	Z Fighting

	Hello Cube
	Drawing the Object with Indices and Vertices Coordinates
	Sample Program (HelloCube.js)
	Writing Vertex Coordinates, Colors, and Indices to the Buffer Object
	Adding Color to Each Face of a Cube
	Sample Program (ColoredCube.js)
	Experimenting with the Sample Program

	Summary

	8. Lighting Objects
	Lighting 3D Objects
	Types of Light Source
	Types of Reflected Light
	Shading Due to Directional Light and Its Diffuse Reflection
	Calculating Diffuse Reflection Using the Light Direction and the Orientation of a Surface
	The Orientation of a Surface: What Is the Normal?
	Sample Program (LightedCube.js)
	Add Shading Due to Ambient Light
	Sample Program (LightedCube_ambient.js)

	Lighting the Translated-Rotated Object
	The Magic Matrix: Inverse Transpose Matrix
	Sample Program (LightedTranslatedRotatedCube.js)

	Using a Point Light Object
	Sample Program (PointLightedCube.js)
	More Realistic Shading: Calculating the Color per Fragment
	Sample Program (PointLightedCube_perFragment.js)

	Summary

	9. Hierarchical Objects
	Drawing and Manipulating Objects Composed of Other Objects
	Hierarchical Structure
	Single Joint Model
	Sample Program (JointModel.js)
	Draw the Hierarchical Structure (draw())
	A Multijoint Model
	Sample Program (MultiJointModel.js)
	Draw Segments (drawBox())
	Draw Segments (drawSegment())

	Shader and Program Objects: The Role of initShaders()
	Create Shader Objects (gl.createShader())
	Store the Shader Source Code in the Shader Objects (g.shaderSource())
	Compile Shader Objects (gl.compileShader())
	Create a Program Object (gl.createProgram())
	Attach the Shader Objects to the Program Object (gl.attachShader())
	Link the Program Object (gl.linkProgram())
	Tell the WebGL System Which Program Object to Use (gl.useProgram())
	The Program Flow of initShaders()

	Summary

	10. Advanced Techniques
	Rotate an Object with the Mouse
	How to Implement Object Rotation
	Sample Program (RotateObject.js)

	Select an Object
	How to Implement Object Selection
	Sample Program (PickObject.js)
	Select the Face of the Object
	Sample Program (PickFace.js)

	HUD (Head Up Display)
	How to Implement a HUD
	Sample Program (HUD.html)
	Sample Program (HUD.js)
	Display a 3D Object on a Web Page (3DoverWeb)

	Fog (Atmospheric Effect)
	How to Implement Fog
	Sample Program (Fog.js)
	Use the w Value (Fog_w.js)

	Make a Rounded Point
	How to Implement a Rounded Point
	Sample Program (RoundedPoints.js)

	Alpha Blending
	How to Implement Alpha Blending
	Sample Program (LookAtBlendedTriangles.js)
	Blending Function
	Alpha Blend 3D Objects (BlendedCube.js)
	How to Draw When Alpha Values Coexist

	Switching Shaders
	How to Implement Switching Shaders
	Sample Program (ProgramObject.js)

	Use What You’ve Drawn as a Texture Image
	Framebuffer Object and Renderbuffer Object
	How to Implement Using a Drawn Object as a Texture
	Sample Program (FramebufferObjectj.js)
	Create Frame Buffer Object (gl.createFramebuffer())
	Create Texture Object and Set Its Size and Parameters
	Create Renderbuffer Object (gl.createRenderbuffer())
	Bind Renderbuffer Object to Target and Set Size (gl.bindRenderbuffer(), gl.renderbufferStorage())
	Set Texture Object to Framebuffer Object (gl.bindFramebuffer(), gl.framebufferTexture2D())
	Set Renderbuffer Object to Framebuffer Object (gl.framebufferRenderbuffer())
	Check Configuration of Framebuffer Object (gl.checkFramebufferStatus())
	Draw Using the Framebuffer Object

	Display Shadows
	How to Implement Shadows
	Sample Program (Shadow.js)
	Increasing Precision
	Sample Program (Shadow_highp.js)

	Load and Display 3D Models
	The OBJ File Format
	The MTL File Format
	Sample Program (OBJViewer.js)
	User-Defined Object
	Sample Program (Parser Code in OBJViewer.js)

	Handling Lost Context
	How to Implement Handling Lost Context
	Sample Program (RotatingTriangle_contextLost.js)

	Summary

	A. No Need to Swap Buffers in WebGL
	B. Built-in Functions of GLSL ES 1.0
	Angle and Trigonometry Functions
	Exponential Functions
	Common Functions
	Geometric Functions
	Matrix Functions
	Vector Functions
	Texture Lookup Functions

	C. Projection Matrices
	Orthogonal Projection Matrix
	Perspective Projection Matrix

	D. WebGL/OpenGL: Left or Right Handed?
	Sample Program CoordinateSystem.js
	Hidden Surface Removal and the Clip Coordinate System
	The Clip Coordinate System and the Viewing Volume
	What Is Correct?
	Summary

	E. The Inverse Transpose Matrix
	F. Load Shader Programs from Files
	G. World Coordinate System Versus Local Coordinate System
	The Local Coordinate System
	The World Coordinate System
	Transformations and the Coordinate Systems

	H. Web Browser Settings for WebGL
	Glossary
	A
	B
	C
	D
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Z


